Vaccination for protection of retinal ganglion cells against death from glutamate cytotoxicity and ocular hypertension: implications for glaucoma.
نویسندگان
چکیده
Our group recently demonstrated that autoimmune T cells directed against central nervous system-associated myelin antigens protect neurons from secondary degeneration. We further showed that the synthetic peptide copolymer 1 (Cop-1), known to suppress experimental autoimmune encephalomyelitis, can be safely substituted for the natural myelin antigen in both passive and active immunization for neuroprotection of the injured optic nerve. Here we attempted to determine whether similar immunizations are protective from retinal ganglion cell loss resulting from a direct biochemical insult caused, for example, by glutamate (a major mediator of degeneration in acute and chronic optic nerve insults) and in a rat model of ocular hypertension. Passive immunization with T cells reactive to myelin basic protein or active immunization with myelin oligodendrocyte glycoprotein-derived peptide, although neuroprotective after optic nerve injury, was ineffective against glutamate toxicity in mice and rats. In contrast, the number of surviving retinal ganglion cells per square millimeter in glutamate-injected retinas was significantly larger in mice immunized 10 days previously with Cop-1 emulsified in complete Freund's adjuvant than in mice injected with PBS in the same adjuvant (2,133 +/- 270 and 1,329 +/- 121, respectively, mean +/- SEM; P < 0.02). A similar pattern was observed when mice were immunized on the day of glutamate injection (1,777 +/- 101 compared with 1,414 +/- 36; P < 0.05), but not when they were immunized 48 h later. These findings suggest that protection from glutamate toxicity requires reinforcement of the immune system by antigens that are different from those associated with myelin. The use of Cop-1 apparently circumvents this antigen specificity barrier. In the rat ocular hypertension model, which simulates glaucoma, immunization with Cop-1 significantly reduced the retinal ganglion cell loss from 27.8% +/- 6.8% to 4.3% +/- 1.6%, without affecting the intraocular pressure. This study may point the way to a therapy for glaucoma, a neurodegenerative disease of the optic nerve often associated with increased intraocular pressure, as well as for acute and chronic degenerative disorders in which glutamate is a prominent participant.
منابع مشابه
Stem Cells in Glaucoma Management
Glaucoma is the leading cause of preventable blindness worldwide. Despite tremendous advances in medical and surgical management of glaucoma in the recent years, the prevalence of glaucoma related blindness is anticipated to increase in the future decades because of the aging population. Stem cells have the potential to change the glaucoma management in several ways. There are several areas of ...
متن کاملProtection by eliprodil against excitotoxicity in cultured rat retinal ganglion cells.
PURPOSE To test whether eliprodil (SL 82.0715), a unique antagonist for the N-methyl-D-aspartate (NMDA) receptor, is protective in the glutamate-induced cytotoxicity model in cultured rat retinal ganglion cells (RGCs). METHODS Two to four days after a fluorescent dye, Di-I, was injected near the superior colliculi, neonatal rats were killed, and retinal cells were dissociated and cultured. Su...
متن کاملLong-Term Protection of Retinal Ganglion Cells and Visual Function by Brain-Derived Neurotrophic Factor in Mice With Ocular Hypertension
PURPOSE Glaucoma, frequently associated with elevated intraocular pressure (IOP), is characterized by progressive retinal ganglion cell (RGC) death and vision loss. Brain-derived neurotrophic factor (BDNF) has been studied as a candidate for neuroprotection in rodent models of experimental glaucoma, yet it remains to be determined whether BDNF exerts long-term protection for subtype RGCs and vi...
متن کاملSoluble Tumor Necrosis Factor Alpha Promotes Retinal Ganglion Cell Death in Glaucoma via Calcium-Permeable AMPA Receptor Activation.
UNLABELLED Loss of vision in glaucoma results from the selective death of retinal ganglion cells (RGCs). Tumor necrosis factor α (TNFα) signaling has been linked to RGC damage, however, the mechanism by which TNFα promotes neuronal death remains poorly defined. Using an in vivo rat glaucoma model, we show that TNFα is upregulated by Müller cells and microglia/macrophages soon after induction of...
متن کاملNeurodegeneration and neuroprotection in glaucoma: development of a therapeutic neuroprotective vaccine: the Friedenwald lecture.
Glaucoma can be viewed as a neurodegenerative disease that is often associated with high intraocular pressure (IOP), and in which at any time there are fibers (optic nerve axons) and cell bodies (retinal ganglion cells) that are vulnerable to degeneration and amenable to protection. According to this view, patients receiving antihypertensive therapy to control an increase in intraocular pressur...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 98 6 شماره
صفحات -
تاریخ انتشار 2001